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Abstract Surface exchange reactions and diffusion of
oxygen in ceramic composites consisting of a dilute and
random distribution of inclusions in a polycrystalline matrix
(host phase) are modeled phenomenologically by employ-
ing the finite element method. The microstructure of the
mixed conducting composite is described by means of a
square grain model, including grain boundaries of the
matrix and interphase boundaries between the inclusions
and grains of the host phase. An instantaneous change of
the oxygen partial pressure in the surrounding atmosphere
may give rise to an oxygen exchange process, i.e.,
oxidation or reduction of the ceramic composite. Relaxation
curves for the total amount of exchanged oxygen are
calculated, emphasizing the role played by fast diffusion
along the interfaces. The relaxation curves are interpreted in
terms of effective medium diffusion, introducing appropri-
ate equations for the effective diffusion coefficient and the
effective surface exchange coefficient. When extremely fast
diffusion along the grain and interphase boundaries is
assumed, the re-equilibration process shows two different
time constants. Analytical approximations for the relaxation
process and relations for the separate relaxation times are
provided for this limiting case as well as for blocking
interphase boundaries. Furthermore, conductivity relaxation
curves are calculated by coupling diffusion and dc
conduction. In the case of effective medium diffusion, the
conductivity relaxation curves do not deviate from those for
the total amount of exchanged oxygen. On the contrary, the
conductivity relaxation curves differ remarkably from the
time dependence of the total amount of exchanged oxygen,

when the different phases of the composite re-equilibrate
with separate time constants.
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Introduction

Composites play an increasingly relevant role in the field of
functional materials, since heterogeneous systems consisting
of a mixture of at least two solid phases are very suitable for
the optimization of, e.g., electrical, transport, and mechanical
properties. Especially, a sound knowledge of the transport
properties of mixed ionically–electronically conducting com-
posites [1] is crucial for the development of novel electro-
ceramic materials for application as, e.g., oxygen separation
membranes and cathodes in solid oxide fuel cells [2, 3].

The mass and charge transport in ceramic composites
can be strongly affected by interfaces, comprising surface
exchange reactions as well as transport across/along
grain and interphase boundaries. The permeation of
oxygen through densely sintered polycrystalline mem-
branes consisting of perovskite-related materials, such as
SrCo0.8 Fe0.2O3−δ [4] and La0.5Sr0.5FeO3−δ [5], seems to be
enhanced at grain boundary regions. Recently, the oxygen
surface exchange reaction has been reported to increase
considerably at heterointerfaces of (La,Sr)CoO3/(La,Sr)2CoO4

composite ceramics [6, 7]. Moreover, fast ionic conduction
has been observed in nano-sized multilayer heterostructures
owing to space charge effects [8] or structural disorder at
incoherent heterophase boundaries [9].

It is the aim of this contribution to model phenomeno-
logically the oxygen exchange between a ceramic composite
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and the surrounding atmosphere after the oxygen partial
pressure has been changed instantaneously. The re-
equilibration process, i.e., oxidation or reduction of the
mixed conducting electroceramics, involves both surface
exchange reaction and diffusion of oxygen in the composite
consisting of two randomly distributed phases. Special
emphasis is laid on fast diffusion of oxygen along grain
boundaries as well as heterointerfaces. The microstructure of
the composite is described by means of a square grain model
and the diffusion equations are solved numerically by
application of the finite element method [10, 11]. The
composition of the composite is restricted to a dilute
distribution of inclusions in a matrix (host) phase, such
that percolation phenomena [12, 13] can be neglected.
Relaxation curves for the total amount of exchanged
oxygen are discussed in terms of effective medium
diffusion within the framework of the Maxwell–Garnett
approach [14–20]. In the case of extremely fast transport
along the grain and interphase boundaries, the relaxation
process shows two different time constants. Analytical
approximations are provided for this case as well as for
blocking interphase boundaries, introducing two separate
relaxation times. It should be mentioned that re-equilibration
processes of single crystals may even show two relaxation
times, when the transport of two chemical components on
separate sub-lattices is kinetically de-coupled, e.g., differ-
ent relaxation kinetics of cation and anion sub-lattices
[21]. This situation is not taken into account in the present
work, i.e., exclusively the effect of the microstructure on
relaxation processes is investigated assuming local equi-
librium in the individual phases of the composite.
Moreover, conductivity relaxation curves are predicted
by coupling diffusion and dc conduction in the present
finite element model.

Theoretical aspects

Based on a finite element model published previously [19],
the present approach represents an extension with respect to
fast diffusion along grain boundaries as well as hetero-
interfaces. Additionally, finite element simulations of dc
conductivity relaxation curves are facilitated within the
present model by coupling diffusion and dc conduction. In
the following, the extended model will be outlined in detail.
The microstructure of a ceramic composite can be described
by employing a square grain model, as shown in Fig. 1. The
composite is composed of two different phases with
individual diffusion coefficients and surface exchange
coefficients. The amount of phase 2 may be restricted to
values fairly below the percolation threshold, such that the
composite is a dilute and random dispersion of inclusions
(phase 2) in a polycrystalline matrix (host phase 1). The
particles of both phases are considered to be square grains
of equal size, d=0.1 μm. The interfaces (grain boundaries)
between grains of phase 1 are assumed to be thin slabs of
uniform thickness, δ=0.5 nm. The interphase (heterophase)
boundaries between the inclusions (phase 2) and grains of
the matrix (host phase 1) may likewise consist of thin slabs
with uniform thickness, δ=0.5 nm. The kinetic parameters
of both grain (homophase) and interphase (heterophase)
boundaries may differ considerably from those of the bulk
(grains) of phases 1 and 2.

In the case of spatially uniform diffusion coefficients, the
transient behavior of transport processes in both phases of
the composite as well as the grain and interphase
boundaries can be described phenomenologically by
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Fig. 1 Square grain model for a possible microstructure of the
composite consisting of a random distribution of inclusions in a host
phase (matrix). The particles of both phases are squares with equal
side length d=0.1 μm. Both the grain boundaries between grains of

the host phase and the interphase boundaries between the inclusions
and particles of the matrix are thin slabs of uniform thickness δ=
0.5 nm. The volume fraction of inclusions amounts to 10% (g=0.1)
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@c2
@t

¼ D2r2c2 ð1bÞ

@c0

@t
¼ D0r2c0 ð1cÞ

@c00

@t
¼ D00r2c00 ð1dÞ

where D1, D2, D′, and D″ and c1, c2, c′, and c″ denote the
pertinent diffusion coefficients and diffusant concentrations
of phase 1, phase 2, grain boundaries, and heterointerfaces,
respectively. The surface of the mixed conducting compos-
ite (x=0) may be exposed to an oxygen containing gas
phase (diffusion source). The instantaneous change of the
oxygen partial pressure in the surrounding gas phase gives
rise to oxygen exchange reactions at the surface of the
composite material. In the case of small variations of the
oxygen activity (partial pressure), the fluxes at the surface
for incorporation or release of oxygen into/from the ceramic
composite can be written as (x=0)

J1 ¼ �k1ðc1 � c1;1Þ ¼ �D1
@c1
@x

ð2aÞ

J2 ¼ �k2ðc2 � c2;1Þ ¼ �D2
@c2
@x

ð2bÞ

J 0 ¼ �k 0ðc0 � c01Þ ¼ �D0 @c
0

@x
ð2cÞ

J 00 ¼ �k 00ðc00 � c001Þ ¼ �D00 @c
00

@x
ð2dÞ

within the limits of linear response. The quantities k1, k2, k′,
and k″ and c1,∞, c2,∞, c01, and c001 refer to the surface
exchange coefficients and diffusant concentrations at the
end of the re-equilibration process (t→∞) of phase 1, phase
2, grain boundaries, and heterointerfaces, respectively. The
surface at x=L may be a diffusion barrier for the diffusing
species

@c1
@x

¼ @c2
@x

¼ @c0

@x
¼ @c00

@x
¼ 0; x ¼ L ð3Þ

with L being the thickness of the composite. For symmetry
reasons the boundaries at y=± L/2 are likewise reflecting,
i.e. vanishing fluxes,

@c1
@y

¼ @c2
@y

¼ @c0

@y
¼ @c00

@y
¼ 0; y ¼ �L=2 ð4Þ

In the case of conductivity relaxation experiments oxygen
exchange reactions usually occur at both surfaces (x=0 and
x=2L) of a disk-shaped sample with thickness 2L, such that
boundary condition (3) is still fulfilled.

The boundary conditions at the contact between a grain
of phase 1 and a grain boundary are given by

D1
@c1
@n

¼ D0 @c
0

@n
ð5aÞ

c0 ¼ s0c1: ð5bÞ

At the contact between phase 1 and the heterointerface the
boundary conditions read

D1
@c1
@n

¼ D00 @c
00

@n
ð6aÞ

c00 ¼ s001 c1; ð6bÞ

while for phase 2 one arrives at

D2
@c2
@n

¼ D00 @c
00

@n
ð7aÞ

c00 ¼ s002 c2: ð7bÞ

The symbols s0, s001 , and s002 correspond to the segregation
factors for phase 1, phase 2, and grain boundaries as well as
heterointerfaces, respectively, and the operator ∂/∂n denotes
differentiation along the normal of the interface [22]. In the
case of 18O tracer exchange measurements the segregation
factors are unity, s0 ¼ s001 ¼ s002 ¼ 1: Regarding chemical
diffusion (conductivity relaxation) experiments the quanti-
ties s0, s001 , and s002 refer to ratios of the oxygen non-
stoichiometry changes of the pertinent phases and interfaces
which corresponds to s0 ¼ @m=@c1ð Þ= @m=@c0ð Þ, s001 ¼
@m=@c1ð Þ= @m=@c00ð Þ, and s002 ¼ @m=@c2ð Þ= @m=@c00ð Þ for
small driving forces (linear response) with μ being the
chemical potential of the mobile neutral component
(oxygen) in accordance with Ref. [18]. It should be
mentioned that in the case of conductivity relaxation
experiments, the kinetic parameters are related to chemical
diffusion coefficients and chemical surface exchange
coefficients, while for 18O exchange studies tracer diffusion
coefficients and tracer surface exchange coefficients are
involved.

The diffusion Eqs. 1a–1d subject to boundary conditions
(2)–(7) have been solved numerically by application of the
finite element method using the software package COM-
SOL Multiphysics® 3.5a. Relaxation curves for the time
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dependence of the total amount of exchanged oxygen,
m(t)/m(∞), are obtained from

mðtÞ
mð1Þ ¼

1

L2

ZL

0

ZþL=2

�L=2

c� c0
c1 � c0

dydx; ð8Þ

as outlined in detail previously [19, 20]. The quantities c0
and c∞ in Eq. 8 denote the initial (t=0) and final (t→∞)
values of the average (effective) diffusant concentrations.

Additional boundary conditions are required in order to
simulate conductivity relaxation curves, see Fig. 1. A
constant voltage, U, may be applied at electronically
conducting electrodes (y=±L/2). The remaining surfaces
(x=0, L) may be electrically insulating. The applied
voltage, U, corresponds to the difference of the electro-
chemical potential of the electronic charge carriers in the
matrix, inclusions, and grain and interphase boundaries,
respectively,

eme;1 ¼ eme;2 ¼ em0
e ¼ em00

e ¼ �FU ; y ¼ þL=2 ð9aÞ

eme;1 ¼ eme;2 ¼ em0
e ¼ em00

e ¼ 0; y ¼ �L=2 ð9aÞ
with F denoting the Faraday constant. If the electronic
transport number of the mixed conducting ceramic com-
posite, including both phases as well as the grain and
interphase boundaries, is assumed to be almost equal to one
(te≈1), the total current densities are given by

j1 ¼ se;1

F
grademe;1 ð10aÞ

j2 ¼ se;2

F
grademe;2 ð10bÞ

j0 ¼ s 0
e

F
gradem0

e ð10cÞ

j00 ¼ s 00
e

F
gradem00

e ð10dÞ

where σe,1, σe,2, s 0
e , and s 00

e refer to the pertinent (local)
electronic conductivities which are a function of space
and time during the diffusion experiment. The local
conductivities are assumed to vary linearly with the
diffusant concentrations (oxygen nonstoichiometry), i.e.,
Δse / Δc. The present finite element model enables the
coupling of diffusion and dc conduction. The continuity
equation

r � j1 ¼ r � j2 ¼ r � j0 ¼ r � j00 ¼ 0 ð11Þ

subject to boundary conditions (9a) and (9b) as well as
Eqs. 1a–1d taking account of boundary conditions (2)–(7)
are solved simultaneously (COMSOL Multiphysics®
3.5a), yielding the total current I(t) that is obtained by
integrating the current density along the boundary at
y ¼ �L=2 IðtÞ ¼ R L

x¼0 jdx ; y ¼ �L=2
h i

. The normalized
electronic conductivity of the composite is finally given by

snorm ¼ s � s0

s1 � s0
¼ IðtÞ � Ið0Þ

Ið1Þ � Ið0Þ ð12Þ

where σ0, I(0) and σ∞, I(∞) are the initial and final values for
the conductivity and the total current at the beginning and the
end of the conductivity relaxation experiment, respectively.

Results and discussion

Typical examples of calculated relaxation curves for the
total amount of exchanged oxygen are depicted in
Fig. 2. The numerical simulations coincide remarkably
well with the analytical solution for effective medium
diffusion [23]

mðtÞ
mð1Þ ¼ 1� 2

keff
Deff

� �2 X1
n¼0

exp �a2
nDeff t

� �
a2
n k2effL

2=D2
eff þ keffL=Deff þ L2a2

n

� �
ð13Þ

where the parameters αn are given by the roots of the
transcendental equation an tanðanLÞ ¼ keff=Deff . Accord-
ing to the Maxwell–Garnett approach [15, 18], the
effective diffusion coefficient for a two-dimensional
homogeneous medium can be written as

Deff ¼ D0
1

1� g þ sg
1þ 2ðsD0

2 � D0
1Þg

sD0
2 þ D0

1 þ ðD0
1 � sD0

2Þg
� �

:

ð14Þ
with g denoting the volume fraction of inclusions. The
symbol s is defined as the ratio of the effective (average)
diffusant concentrations (oxygen nonstoichiometries in the
case of chemical diffusion) of the matrix including the
grain boundaries, c01, and the inclusions including the
interphase boundaries, c02,

s ¼ c02
c01

ð15aÞ

c01 ¼ g0c0 þ ð1� g0Þc1 ð15bÞ

c02 ¼ g00c00 þ ð1� g00Þc2; ð15cÞ
where g′ refers to the volume fraction of the grain boundaries
in the matrix, g0 ¼ 2d=d, and g″ is given by g00 ¼ 4d=d. The
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thickness of both grain and interphase boundaries, δ, is
assumed to be much smaller than the grain size, d, of the
polycrystalline matrix as well as the inclusions. The factor s
is related to s ¼ ð@m=@c01Þ=ð@m=@c02Þ in analogy to the
segregation factors for the respective phases and inter-
faces as outlined in the previous section. It is worth
mentioning that in the case of small driving forces (linear
response) and negligible storage capacity of both grain
and interphase boundaries ðs0g0; s002g00 << 1Þ, the parame-
ter s reads

s � ð@m=@c1Þ
ð@m=@c2Þ : ð16Þ

The effective diffusion coefficient of the polycrystalline
matrix (including the grain boundaries) can be expressed
as

D0
1 ¼ "s0D0 þ ð1� "ÞD1

1� g0 þ s0g0
; ð17Þ

while the effective diffusion coefficient for the inclusions
including the interphase boundaries is given by

D0
2 ¼ 2"s002D00 þ ð1� 2"ÞD2

1� g00 þ s002g00
ð18Þ

with ε denoting the area fraction of grain and interphase
boundaries, ε=δ/d. A detailed derivation of Eqs. 17 and
18, which are valid for fast grain and interphase boundary
diffusion (D′, D′>>D1, D2), can be found in the appendix.
Analogously to the relations for the effective diffusivity,
the effective surface exchange coefficient can be written as

keff ¼ sgk 02 þ ð1� gÞk 01
1� g þ sg

ð19aÞ

k 01 ¼ "s0k 0 þ ð1� "Þk1
1� "þ "s0

ð19bÞ

k 02 ¼ 2"s002k 00 þ ð1� 2"Þk2
1� 2"þ 2"s002

: ð19cÞ

The relaxation time for the re-equilibration process is
obtained from the slope of the semi-logarithmic plot ln½1�
mðtÞ=mð1Þ� versus time, see Fig. 2b, teff ¼ �ðslopeÞ�1 ¼
ða2

1Deff Þ�1 [α1 is the first root of the transcendental
equation a1 tanða1LÞ ¼ keff=Deff ]. More details can be
found elsewhere [19, 24, 25].

Effective medium diffusion is observed only if the time
constant τeff is much higher than the individual relaxation
times for the transport processes in the phases and

interfaces of the composite, teff >> t1; t2; t 0; t 00. On the
contrary, when the relaxation time for diffusion in phase 1
and/or phase 2 is much longer than that for transport in the
effective medium, the relaxation process shows two
separate time constants. The overall re-equilibration process
of the two-dimensional square grain model can be
described by the analytical approximation

mðtÞ
mð1Þ ¼ 1� 1� g

1� g þ sg

8

p2
X1
n¼0

exp½�p2ð2nþ 1Þ2D1t=d2�
ð2nþ 1Þ2

( )2

� sg

1� g þ sg

8

p2
X1
n¼0

exp½�p2ð2nþ 1Þ2D2t=d2�
ð2nþ 1Þ2

( )2

:

ð20Þ

(a) In the case of extremely fast diffusion along the grain
boundaries of a homogeneous ceramic material (single
phase material), i.e. , s0"D0=ð4L2Þ >> 2D1=d2, the
analytical approximation for the re-equilibration pro-
cess is likewise given by Eq. 20 with g=0. A typical
example for a relaxation curve of the total amount of
exchanged oxygen is depicted in Fig. 3, where the
insert shows the corresponding semi-logarithmic plot.
The rate-determining step is slow bulk diffusion from
the grain boundaries into the grains. At long diffusion
times, the slope of the straight line of the semi-
logarithmic plot enables the determination of the
diffusion coefficient for the grains, D1, as reported
in detail elsewhere [20, 24, 25]. It should be noted
that only one relaxation time can be observed in
Fig. 3, assuming a negligible storage capacity of the
grain boundaries of the polycrystalline single phase
material.

(b) Extremely fast diffusion along the grain and inter-
phase boundaries is assumed and the diffusion
coefficient of phase 1 (grains of the matrix) is higher
than that for the inclusions (phase 2), i.e.,
s0"D0=ð4L2Þ; s002"D00=ð4L2Þ >> 2D1=d2 > 2D2=d2. Re-
laxation curves for this case are shown in Fig. 4. Two
different slopes can be observed in Fig. 4b, which are
related to separate relaxation times. The grain and
interphase boundaries are re-equilibrated instanta-
neously, such that the rate-determining diffusion
processes occur from the grain and interphase
boundaries into the grains of phase 1 and subse-
quently into the inclusions because of the lower
diffusivity of oxygen in phase 2 compared to the
matrix. Hence, the first relaxation time (slope of the
semi-logarithmic plot in Fig. 4b) reads

tI ¼ d2

2p2D1
ð21Þ
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and the second slope in Fig. 4b refers to the time
constant for diffusion into the inclusions

tII ¼ d2

2p2D2
ð22Þ

in accordance with Eq. 20.

(c) The situation of extremely fast diffusion along the grain
and interphase boundaries, with a higher diffusivity in
phase 2 than in phase 1, is illustrated in Fig. 5,
i . e . s0"D0=ð4L2Þ; s002"D00=ð4L2Þ>>2D2=d2> 2D1=d2.
Again, the new equilibrium activity of oxygen is
established instantaneously in the grain and inter-
phase boundaries and two different relaxation
processes can be distinguished, see Fig. 5b. The
first (faster) relaxation process is related to diffusion

from the interphase boundaries into the inclusions
with the time constant

tI ¼ d2

2p2D2
; ð23Þ

whereas the second transport process corresponds to
diffusion into the grains of phase 1with the relaxation time

tII ¼ d2

2p2D1
: ð24Þ

Alternatively, re-equilibration processes with two separate
relaxation times are expected, when the time constant for
interfacial diffusion exceeds considerably that for effective
medium diffusion, i.e., teff << t 0; t 00. For the sake of
simplicity, the discussion is restricted to blocking interphase
boundaries (D00=d << D2=d;D1=d)

mðtÞ
mð1Þ ¼ 1� 1� g

1� g þ sg
� 2

k 01
D0

1

� �2 X1
n¼0

expð�b2nD
0
1tÞ

b2nðk 021 L2=D02
1 þ k 01L=D0

1 þ L2b2nÞ
� sg

1� g þ sg
� exp � 4D00

dd
t

� �
ð25Þ

provided that the thickness of the heterointerfaces is much
smaller than the grain size of the inclusions, δ<<d, such
that D″/δ corresponds to the mass transfer coefficient for
transport across the interphase boundary. The parameters βn
are defined by the roots of the transcendental equation
bn tanðbnLÞ ¼ k 01=D0

1. The transport across heterophase
boundaries is generally blocked, when depletion (space
charge) layers, impurities, or detrimental side reactions

arise at the interface. According to Eq. 25, a fast transport
process is anticipated in the polycrystalline matrix, resulting
in the first relaxation time

tI ¼ 1

b21D
0
1

; ð26Þ

where β1 is the first root of b1 tanðb1LÞ ¼ k 01=D0
1. The

effective kinetic parameters of the matrix (D0
1 and k 01) are
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Fig. 2 Variation of the total amount of exchanged oxygen with time. The
lines are obtained from the present finite element model. The symbols
are based on analytical expressions for effective medium diffusion. L=
2.06 μm, d=0.1 μm, δ=0.5 nm, g=0.1, s0 ¼ s001 ¼ s002 ¼ 1. Solid line:
D1=10
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given by Eqs. 17 and 19b. The second relaxation process
involves transport across the blocking heterointerfaces into
the inclusions with the time constant for the two-
dimensional square grain model

tII ¼ dd
4D00 : ð27Þ

Relaxation curves for various volume fractions of inclu-
sions are displayed in Fig. 6. The two separate relaxation
processes with different time constants are clearly visible in
the semi-logarithmic plots of Fig. 6b, where the relaxation
curves exhibit two different slopes.

Basically, the total amount of exchanged oxygen can be
measured as a function of time by employing, among others,
thermogravimetry [26] and carrier gas coulometry [27, 28]. In
the case of conductivity relaxation experiments [28–30], the
quantity m(t)/m(∞) is related to the normalized electronic
conductivity snorm ¼ ðs � s0Þ=ðs1 � s0Þ. The relation
mðtÞ=mð1Þ ¼ snorm is fulfilled, if the re-equilibration pro-
cess can be described by effective medium diffusion, i.e., one
single (effective) relaxation time is required. On the contrary,
when two separate time constants are necessary for the
description of the relaxation process, the time dependence of
the total amount of exchanged oxygen may differ significant-
ly from the relaxation curve for the electronic dc conductivity.

The discussion of conductivity relaxation curves will be
restricted to the following case of two different relaxation
times. If the diffusion coefficient of the grains of the matrix is
higher by several orders of magnitude than that for the
inclusions, a fast transport process will arise in the effective
medium of the polycrystalline matrix and the second
relaxation process is related to diffusion from the matrix into
the inclusions. High diffusivities and conductivities of the
grain boundaries and heterointerfaces are assumed, i.e., non-
blocking interfaces. This situation has been outlined in detail
recently with respect to the total amount of exchanged oxygen
[19, 20]. Typical relaxation curves for the total amount of
exchanged oxygen as well as the electronic conductivity are
shown in Fig. 7. Various ratios of the dc conductivities of the
inclusions and the host phase have been taken into account.
The re-equilibration process of the matrix is given by

mðtÞ
mð1Þ

����
matrix

¼ 1� 2
k 01
D0
1

� �2 X1
n¼0

expð�b2nD
0
1tÞ

b2nðk 021 L2=D02
1 þ k 01L=D0

1 þ L2b2nÞ
;

ð28Þ
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Fig. 3 Variation of the total amount of exchanged oxygen with time
for extremely fast diffusion along the grain boundaries of a single
phase (homogeneous) material. The lines are obtained from the
present finite element model. The symbols are based on the
analytical approximation Eq. 20 with g=0. L=2.06 μm, d=0.1 μm,
δ=0.5 nm, s0 ¼ s0 01 ¼ s002 ¼ 1, D1=D2=10

−15 cm2s−1 (bulk diffusiv-
ity), D′=D″=10−5 cm2s−1 (grain boundary diffusivity), and k1=
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−4 cms−1. Insert is the pertinent semi-logarithmic plot
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Fig. 4 Variation of the total amount of exchanged oxygen with time
for extremely fast diffusion along the interfaces of the composite and
D1>D2. The lines are obtained from the present finite element model.
The symbols are based on the analytical approximation Eq. 20. L=

2.06 μm, d=0.1 μm, δ=0.5 nm, g=0.1, s0 ¼ s0 01 ¼ s0 02 ¼ 1, k1=
10−6 cms−1, k2=3×10
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where the effective diffusion coefficient and the effective
surface exchange coefficient of the matrix can be expressed as

D0
1 ¼ "½ð1� 2gÞs0D0 þ 2gs001D00� þ ð1� "ÞD1

1� g0 þ ½ð1� 2gÞs0 þ 2gs001 �g0
ð29Þ

and

k 01 ¼ "½ð1� 2gÞs0k 0 þ 2gs001k 00� þ ð1� "Þk1
1� "þ ½ð1� 2gÞs0 þ 2gs001 �"

: ð30Þ

The second relaxation process refers to diffusion into the
inclusions

mðtÞ
mð1Þ

����
inclusions

¼ 1� 8

p2
X1
n¼0

exp½�p2ð2nþ 1Þ2D2t=d2�
ð2nþ 1Þ2

( )2

ð31Þ

and the two separate relaxation times are given by Eqs. 26
and 22. Assuming a linear correlation between the oxygen
nonstoichiometry and the conductivity changes, the variation
of the conductivity of the matrix (host phase 1) with time can
be written as

s1 ¼ s1;0 þ ðs1;1 � s1;0Þ mðtÞ
mð1Þ

����
matrix

; ð32Þ

while the relaxation of the conductivity of the inclusions
(phase 2) reads

s2 ¼ s2;0 þ ðs2;1 � s2;0Þ mðtÞ
mð1Þ

����
inclusions

ð33Þ
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Fig. 5 Variation of the total amount of exchanged oxygen with time
for extremely fast diffusion along the interfaces of the composite and
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Fig. 6 Time dependence of the total amount of exchanged oxygen for
various volume fractions of the inclusions. The lines are obtained from
the present finite element model. The symbols are based on the
analytical approximation Eq. 25. L=2.06 μm, d=0.1 μm, δ=0.5 nm,

s0 ¼ s0 01 ¼ s0 02 ¼ 1, D1=10
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10−4 cms−1. a Relaxation curves. b Semi-logarithmic plots
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with σ1,0, σ2,0 and σ1,∞, σ2,∞ denoting the initial and final
conductivities of the matrix and inclusions at the beginning
(t=0) and the end (t→∞) of the relaxation experiment,
respectively. Taking account of Eqs. 32 and 33, the
conductivity of the composite is given by

sðtÞ ¼ s1 1þ 2ðs2 � s1Þg
s1 þ s2 þ ðs1 � s2Þg

� �
ð34Þ

in accordance with the two-dimensional Maxwell–Garnett
equation. The overall re-equilibration process of the com-
posite with regard to the total amount of exchanged oxygen
can be written as

mðtÞ
mð1Þ ¼ 1� 1� g

1� g þ sg
� mðtÞ

mð1Þ
����
matrix

� sg

1� g þ sg
� mðtÞ

mð1Þ
����
inclusions

: ð35Þ

From Fig. 7, one can deduce that the relaxation curves
obtained from the present finite element model concur
satisfactorily with analytical approximations based on
Eq. 34 for the conductivity relaxation curves and Eq. 35
for the time dependence of the total amount of exchanged
oxygen. It should be noted that the finite element
simulations for σ(t) differ from the analytical approxima-
tion based on Eq. 34 by approximately 1%, when
σ1,0≠σ2,0 and σ1,∞≠σ2,∞. Interestingly, the conductivity

relaxation curves deviate from that for the total amount of
exchanged oxygen, even if the initial and final conductiv-
ities of the matrix and inclusions are equal, i.e., σ1,0=σ2,0
and σ1,∞=σ2,∞ [σ1(t)≠σ2(t) due to different time constants
for phases 1 and 2]. In the case of effective medium
diffusion, the coupled simulation of diffusion and dc
conductivity relaxation revealed no deviation of m(t)/m(∞)
from the normalized conductivity regardless of the
relationship between diffusant concentration (oxygen non-
stoichiometry) and local conductivity, such that effective
kinetic parameters can be obtained from conductivity
relaxation experiments by application of Eq. 13.

Conclusions

Surface exchange reactions and diffusion of oxygen in a
ceramic composite have been modeled numerically by
employing the finite element technique. The composite
may be composed of a random and dilute distribution of
inclusions in a polycrystalline matrix. The microstructure
is described by a square grain model including grain
boundaries of the matrix (host phase) as well as
interphase boundaries between the inclusions and grains
of the matrix. Relaxation curves for the total amount of
exchanged oxygen due to an instantaneous change of the
oxygen partial pressure of the surrounding gas phase are
calculated, emphasizing fast diffusion along the grain
and interphase boundaries. Analytical approximations are
given for effective medium diffusion, provided that the
relaxation time for effective medium diffusion is much
higher than the time constants for the transport process in
the individual phases and interfaces of the composite.
Appropriate relations for the effective diffusion coeffi-
cient and the effective surface exchange coefficient are
introduced. On the contrary, two different relaxation
times are required for the description of the re-
equilibration process regarding both extremely fast
diffusion along the interfaces and blocking interphase
boundaries. Analytical approximations and appropriate
relations for the two separate time constants are provided
for these limiting cases.

In addition, conductivity relaxation curves have been
simulated by coupling diffusion and dc conduction in the
present finite element model. No deviation between
relaxation curves for the total amount of exchanged oxygen
and the normalized conductivity is predicted, when the re-
equilibration process of the composite can be described by
effective medium diffusion. On the contrary, in the case of
separate relaxation processes in different phases of the
composite the time dependence of the dc conductivity
deviates remarkably from that for the total amount of
exchanged oxygen. Analytical approximations have been
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Fig. 7 Relaxation curves for the normalized conductivity,
σnorm ¼ ðσ� σ0Þ=ðσ1 � σ0Þ, as well as the total amount of
exchanged oxygen, m(t)/m(∞). L=2.06 μm, d=0.1 μm, δ=0.5 nm,
g=0.1, s0 ¼ s0 01 ¼ s0 02 ¼ 1, D1=10

−10 cm2s−1, D2=10
−17 cm2s−1,

D′=3×10−8 cm2s−1, D″=2×10−7 cm2s−1, k1=10
−6 cms−1, k2=3×

10−7 cms−1, k′=10−4 cms−1, and k″=4×10−4 cms−1. The lines are
obtained from the present finite element model. The symbols are based
on the analytical approximations (Eqs. 34 and 35)
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derived which may be suitable for an advanced interpreta-
tion of experimental results obtained from conductivity
relaxation experiments as well as for the extraction of
kinetic parameters of the phases and interfaces in the
composite.

Appendix

The effective diffusion coefficient of the polycrystalline
matrix (grains of phase 1 and grain boundaries) can be
written as

D0
1 ¼ s0D0

1� g0 þ s0g0

� 1þ 2ðD1 � s0D0Þð1� g0Þ
D1 þ s0D0 þ ðs0D0 � D1Þð1� g0Þ

� �
ðA1Þ

by employing the two-dimensional Maxwell–Garnett rela-
tion, where g′ is the volume fraction of grain boundaries in
the matrix and s′ is defined by Eq. 5b. If fast grain
boundary diffusion is assumed and the thickness of the
grain boundaries is much smaller than the grain size, i.e.,
D0 >> D1 and g0 << 1, Eq. A1 can be approximated by

D0
1 � s0D0

1� g0 þ s0g0
� ð2� g0ÞD1 þ s0D0g0

2s0D0

¼ ð1� g0=2ÞD1 þ s0D0g0=2
1� g0 þ s0g0

: ðA2Þ

Introducing the area fraction of grain boundaries,
" ¼ d=d ¼ g0=2, one arrives at Eq. 17, which has been
derived for the effective diffusivity with respect to fast
grain boundary diffusion previously [20, 24, 25, 31].

When the heterointerfaces are arbitrarily combined with
the inclusions (phase 2), the effective diffusion coefficient,
D0

2 is given by

D0
2 ¼ s002D00

1� g00 þ s002g00

� 1þ 2ðD2 � s002D00Þð1� g00Þ
D2 þ s002D00 þ ðs002D00 � D2Þð1� g00Þ

� �
ðA3Þ

in analogy to relation (A1). In this case g″ is given by
g00 ¼ 4d=d ¼ 2", such that Eq. 18 is obtained assuming

D″>>D2 and g″<<1. For the sake of simplicity grain,
boundaries are neglected in the inclusions. However, the
extension of the relations for effective medium diffusion to
polycrystalline inclusions is straightforward.
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